1	(a)	$-3(x^2-4x)+7 \text{ or } -3\left(x^2-4x-\frac{7}{3}\right)$		4	M1	for factorising the expression to find b or $b = -3$ stated or shown clearly in answer.
		$-3[(x-2)^2] \text{ or } c = -2$ $-3[(x-2)^2 - 4] + 7 \text{ or } -3[(x-2)^2 - 4 - \frac{7}{3}]$			M1	or for c shown clearly in answer.
		$-3(x-2)^2 + 12 + 7 \text{ or } -3\left[(x-2)^2 - \frac{19}{3}\right]$			M1	fully correct method.
			$19-3(x-2)^2$		A1	for $19-3(x-2)^2$ oe
	(b)		(2, 19)	1	B1 ft	dep on M1 in part (a) answer must follow answer from (a) if given
						Total 5 marks

Altern	Alternative mark scheme for 1									
1	(a)	$a + bx^2 + 2bcx + bc^2$		4	M1 for multiplying out $a + b(x + c)^2$ to obtain $a + bx^2 + 2bcx + bc^2$ oe					
		$b = -3 \text{ or } 2bc = 12 \text{ or } a + bc^2 = 7 \text{ oe}$			M1 for equating coefficients					
		b = -3 and $c = -2$			M1 for correctly finding b and c					
		a = 19	$19-3(x-2)^2$		A1 for $19-3(x-2)^2$ oe					
	(b)		(2, 19)	1	B1 ft dep on M1 in part (a)					
					Total 5 marks					

2	a	$5 - (x \pm q)^2 + 9$ oe or $p - (x - 3)^2$			M1	may be seen in working eg $-[(x-3)^2-9-5]$
	a				1711	may be seen in working eg $-[(x-3) y y]$
		oe				
						or
		or				
		$p-q^2+2qx-x^2$ and one of				expanding $p - (x - q)^2$ correctly and equating one of
		$2q = 6 \text{ or } p - q^2 = 5$				the coefficient of x or the constant term
			$14 - (x - 3)^2$	2	A1	fully correct
						•
						SCB1 for $(x-3)^2 - 14$
	b	e.g. $(x-3)^2 = 14 - v$			M1	correct steps to isolate their bracket
		1-8. ()				ft from (a) dep on expression in form $\pm p \pm (x-q)^2$
		$[or (y-3)^2 = 14 - x]$				it from (a) dep on expression in form $=p=(x-q)$
	-	[01 (y 3) 14 x]			M1	complete method to find y in terms of x or x in terms
		$x = 3 \pm \sqrt{14 - y}$			1/11	•
		[or $y = 3 \pm \sqrt{14 - x}$]				of y. Condone + for \pm
		5 7				ft from (a) dep on expression in form $\pm p \pm (x-q)^2$
		$(f^{-1}(x) =) 3 - \sqrt{14 - x}$			M1	for the correct inverse
					M1	method to solve $0 < 3 - \sqrt{14 - x}$ or a lower bound
						of 5 clearly shown, eg $x > 5$ as part of the answer
			$5 < x \le 14$	5	A1	cao
						Total 7 marks

3	b	E.g. $(x-5)^2 - 5^2 (+40)$ or $(x-5)^2 - 25 (+40)$ $(x^2 + 2ax + a^2 (+b^2))$ $2a = -10$ or $a = -5$		2	M1	for a correct first step or for equating coefficients
	,		$(x-5)^2+15$		A1	accept $a = -5$, $b = 15$
						SC B1 for $(-x+5)^2 + 15$ or $(5-x)^2 + 15$

4		$(v =) 3t^2 - 9 \times 2t + 33$	5	M1	for differentiating at least 2 terms correctly
	$(a =) 3 \times 2t - `18`$ or	$(v =)3[(t-3)^{2} - (3)^{2}](+33) \text{ or}$ $(v =)3[(t-3)^{2} - (3)^{2}(+11)]$		M1	dep ft must be a two term linear equation or for the use of $(t=)-\frac{b}{2a}$
	$(t=) - \frac{-18}{2 \times 3} \left(= \frac{18}{6} \right)$				or for a correct first step for completing the square on at least a two term quadratic
	6t - 18 = 0 or $t = 3$	$(v=)3[(t-3)^2 - (3)^2] + 33 \text{ or}$ $(v=)3[(t-3)^2 - (3)^2 + 11]$		M1	dep on at least M2 for equating their acceleration to 0 or for a correct method for completing the square on at least a two term quadratic
	3×'3'²-18×'3'+33	$(v =) 3(t-3)^2 + 6 \text{ or}$ $(v =) 3[(t-3)^2 + 2]$		M1	dep on at least M2 for substituting their <i>t</i> into <i>v</i> or for a seeing a correct simplified expression after completing the square
			6	A1	
					Total 5 marks

5 ((a)	$2(x^2-6x)+3$ or $2(x^2-6x+\frac{3}{2})$		3	M1	or for one of <i>a</i> , <i>b</i> or <i>c</i> correct OR expanding $a(x^2 + 2bx + b^2) + c$
		$2[(x-3)^2-9]+3 \text{ or } 2[(x-3)^2-3^2+\frac{3}{2}] \text{ oe}$			M1	or for two of a, b or c correct OR $-12 = 2ab$ or $3 = ab^2 + c$
			$2(x-3)^2-15$		A1	accept $a = 2, b = -3, c = -15$

				Total 4 marks
		$a = \frac{36}{q} + q$ $b = q$ $c = \frac{6}{q}$		Al oe <i>a</i> and <i>c</i> must come from a correct process of completing the square. (Does not need to be simplified)
	E.g. $-q\left(x - \frac{6}{q}\right)^{2} + \frac{36}{q} + q \text{ oe or}$ $-q\left(x - \frac{12}{2q}\right)^{2} + \frac{144q}{4q^{2}} + q \text{ oe}$			M1 for a complete process of completing the square. (Does not need to be simplified)
	$-q\left[\left(x-\frac{12}{2q}\right)^2\right]$ oe or $-q\left[\left(x-\frac{6}{q}\right)^2\right]$ oe			M1 for starting the correct process to complete the square
6	$-q\left(x^2 - \frac{12}{q}x\right) + q \text{ or } -q\left(x^2 - \frac{12}{q}x - \frac{q}{q}\right) \text{ oe}$		4	M1 for a correct factorisation of the expression or $b = q$ (must be stated)

6	$a - bx^2 + 2bcx - bc^2$ oe or		4	M1 for correctly multiplying out $a - b(x - c)^2$
ALT	$-bx^2 + 2bcx - bc^2 + a$ oe or			
	b=q			
	2bc = 12 or			M1 for correctly equating coefficients
	$a - bc^2 = q$ oe			
	$c = \frac{12}{2q} \text{ or } a = q \left(\frac{12}{2q}\right)^2 + q \text{ or }$			M1 for correctly finding a or c (Does not need to be simplified)
	$c = \frac{6}{q}$ or $a = q \left(\frac{6}{q}\right)^2 + q$			
		$a = \frac{36}{q} + q$		A1 oe (Does not need to be simplified)
		b = q		
		$c = \frac{6}{a}$		
<u> </u>		q		T 4 14 1
				Total 4 marks

7 (b)	$3(x^2 + 4x) + 19$ and $3[(x + 2)^2 - 2^2] + 19$ or $3(x^2 + 4x + \frac{19}{3})$ and $3((x + 2)^2 - 2^2 + \frac{19}{3})$ or $a = 3$ and $2ab = 12$ oe and $b^2a + c = 19$ oe or $a = 3$ and $b = \frac{12}{2 \times 3}$ oe and $c = -\frac{12^2}{4 \times 3} + 19$ oe		M1 for correctly taking out a factor of 3 and correctly completing the square or for equating coefficients by expanding $a(x+b)^2 + c = ax^2 + 2abx + b^2a + c$ or for equating coefficients by using $ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a} + c$
		$3(x+2)^2+7$	A1 accept $a = 3, b = 2, c = 7$

8	(a)	$7-3(x^2-4x)$		3	M1	or for one of a , b or c correct	
		$7-3[(x-2)^2-4]$			M1	or for two of <i>a</i> , <i>b</i> or <i>c</i> correct	
			$19-3(x-2)^2$		A1		
	4)					0.1	
	(b)		(2, 19)	1	B1	ft their expression	
						T	otal 4 marks

9 (c)	$5(x^2-4x)$ or $5(x^2-4x$) or $5(x-2)^2$		3	MI
	$5[(x-2)^2-(-2)^2]$ or $5[(x-2)^2-(-2)^2$			M1 $(-2)^2$ can be 2^2 or 4 or $\left(\pm \frac{4}{2}\right)^2$
	or $5(x-2)^2 - 20$ or $5\left[(x-2)^2 + \frac{3}{5}\right]$			(2)
	Correct answer scores full marks (unless from obvious incorrect working)	$5(x-2)^2+3$		A1

Alternative	Alternative mark scheme for 9c									
	$ax^2 - 2abx + ab^2 + c$		3	M1	for multiplying out $a(x-b)^2 + c$ to obtain $ax^2 - 2abx + ab^2 + c$ oe					
	2 of: $a = 5$ $2ab = 20$ oe $ab^2 + c = 23$ oe			M1	for equating coefficients and making 2 correct statements					
		$5(x-2)^2+3$		Al						

10	$3(x^2-2x)$ or $3(x^2-2x+)$ oe or		3	M1	(where is any number or no number)
	$3(x-1)^2$ or $3[(x-1)^2$] oe			M1	(where is any number or no number)
	Correct answer scores full marks (unless from obvious incorrect working)	$3(x-1)^2+2$		Al	(if student continues to solve a quadratic equation, ISW)
					Total 3 marks
Alternativ	e mark scheme for 10		1		
10	$ax^2 -2abx + ab^2 + c$		3	M1	for multiplying out $a(x - b)^2 + c$ to obtain $ax^2 - 2abx + ab^2 + c$ oe
,	Any 2 of the following: $a = 3$ or $2ab = 6$ or $ab^2 + c = 5$ oe			M1	for equating coefficients with any 2 of $a = 3$ or $2ab = 6$ or $ab^2 + c = 5$ oe seen
	Correct answer scores full marks (unless from obvious incorrect working)	$3(x-1)^2+2$		A1	(if student continues to solve a quadratic equation, ISW)
					Total 3 marks